

Features and Benefits

Version: - 12/11/2020

- High bond strength with High load resistance
- Use with all grades of threaded rod and rebar
- For deep embedment installations
- Longer gelling times for large holes
- Used in dry and wet concrete and also in wood
- Used in flooded holes
- Used in corrosive environments
- Suitable for diamond drilled holes
- Used for elevated temperatures temperature ranges I, II and III
- European Approval TR023 for rebar installations
- Low shrinkage enables large diameter installations
- Close edge distance and small spacing
- Manual cleaning up to 20mm diameter and embedment depths of 240mm
- Independently tested and approved

Contents

PAGE 1 - Features and Benefits

PAGE 2 - Loads, Edge and Spacings based on Characteristic bond strengths Showing steel failure

PAGE 3 - Design Resistance of resin used with various stud strengths, material and rebar.

PAGE 4 - Characteristic and Design load resistances based on characteristic bond strengths for hef 4d (minimum embedment) to 20d

- PAGE 5 Bond Strength Factors
- PAGE 6 Characteristic and Design load resistances for REBAR based on
- characteristic bond strengths for hef 4d (minimum embedment) to 20d
- PAGE 7 Bond Strength Factors for REBAR
- PAGE 8 Material properties for threaded rods and rebar
- PAGE 9 Tension Edge and Spacing reduction factors
- PAGE 10 Curing Time / Temperature Range
- PAGE 11 Installation parameters: drilling hole cleaning and installation
- PAGE 12 Chemical Resistance Chart

Shelf Life and Storage

This product should be stored between +5°C & +25°C. The Shelf life of the product is 24 months from the manufacture date.

IMPORTANT The information and data given is based on our own experience, research and testing and is believed to be reliable and accurate. However, as we cannot know the varied uses to which its products may be applied, or the methods of application used, no warranty as to the fitness or suitability of its products is given or implied. It is the users responsibility to determine suitability of use. For further information please contact Our Technical Department.

Epoxy No:5

Product Description

Epoxy No.5 is a Pure Epoxy is a 2 component high strength pure epoxy chemical anchoring resin system. It is designed for deep embedment and large diameter holes due to its zero shrinkage, and longer working times. For diamond drilled holes, with rebar, and in areas of high chemical exposure eg. Seasalt and swimming pools.

Specific Benefits Approvals

- Long working timesHigh loads possible
- Diamond drilled holes
- Fixing studs in woodZero shrinkage
- High chemical resistance
- Use with potable water Lo
- Studs and rebar
- Low odour24 Month shelf life
- European Approval 15/0255 for Post-Installed Rebar TR023
- Tested to BS6920 for use with potable water* (Cured at 7°C for 7 days)
- Tested according to LEED 2009 EQ c4.1, SCAQMD rule 1168 (2005).
- A+ Rating VOC content R240 Fire Tested

Typical characteristic and design resistance performance with 5.8 grade studding and associated installation data

	Charao	cteris c nce (kN)	Design R	Resistance KN)	Recomme		1		distances	Min Edge and Spacing (mm)	Nominal Embedment	Hole Diameter concrete (mm)	Hole Diameter fixture (mm)	
Size	Tension	Shear	Tension	Shear	Tension	Shear	Edge	Spacing	Edge		(mm)			Max Torque
(mm)	N _{rk}	V _{rk}	N _{rd}	V _{rd}	N _{rec}	Vrec	Ccr,N	Scr,N	Ccr,V	Cmin, Smin				(Nm)
	19.00		12.70		9.07						60			
8	19.00	9.00	12.70	7.20	9.07	5.14	80	160	80	40	80	10	9	10
	19.00		12.70		9.07						160			
	25.45		14.14		10.10						60			
10	30.20	15.00	20.10	12.00	14.36	8.57	100	200	90	50	90	12	12	20
	30.20		20.10		14.36						200			
	35.63		19.79		14.14						70			
12	43.80	21.00	29.20	16.80	20.86	12.00	120	240	110	60	110	14	14	40
	43.80		29.20		20.86						240			
	52.28		29.04		20.74						80			
16	81.60	39.00	54.40	31.20	38.86	22.29	160	320	175	80	125	18	18	80
	81.60		54.40		38.86						320			
	67.86		32.31		23.08						90			
20	126.70	61.00	60.30	48.80	43.07	34.86	200	400	225	100	170	22	22	120
	127.40		84.90		60.64						400			
24	82.94		39.49		28.21						100 P	28 ágin	26 a 2	160 20

Epoxy No:5

	174.17	88.00	82.94	70.40	59.24	50.29	240	480	280	120	210			
	183.60		122.40		87.43						480			
	102.64		48.87		34.91						110			
27	223.93	115.00	106.63	92.00	76.17	65.71	270	540	240	135	240	30	30	180
	238.00		159.10		109.50						540			
	124.41		59.24		42.32						120			
30	290.28	142.50	138.23	114.00	98.74	81.43	300	600	280	150	280	35	32	200
	292.00		194.50		133.33						600			
	141.51		67.39		48.13						130			
33	326.57	173.50	155.51	138.80	111.08	99.14	330	660	310	165	300	37	36	250
	360.00		240.60		165.23						660			
	169.65		80.78		57.70						150			
36	384.53	212.50	183.10	170.00	130.79	121.43	360	720	330	180	340	40	38	300
	425.00		283.33		202.38						720			
L		= steel fail	ure	Table not	es : see bac	ck page								

5.8 Grade Steel Studding

		= ste	el fail	ure		Tab	le no	tes :	see b	ackpa	ige												
-	esistance e Steel Sti			vari	ous s	tud s	treng	ths, i	mate	rial a	ınd re	ebar.											
Stud	Hole															steel	failur	e				h _{ef}	F _{d,s} design
Diameter	Diameter									Emb	edm	ent D	epth	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	11.3	12.7																			67	12.7
10	12	14.1	16.5	18.9	20.1																	85	20.1
12	14		19.8	22.6	25.5	28.3	29.2															103	29.2
16	18			29.0	32.7	36.3	39.9	43.6	47.2	50.8	54.4											150	54.4
20	22			30.4	34.2	38.0	41.8	45.6	49.4	53.2	60.8	76.0	84.9									223	84.9
24	28					39.5	43.5	47.4	51.4	55.3	63.2	79.0	94.8	110.6	122.4							310	122.4
27	30						48.9	53.3	57.8	62.2	71.1	88.9	106.7	124.5	142.2	159.1						358	159.1
30	35							59.3	64.2	69.1	79.0	98.8	118.5	138.3	158.1	194.5						394	194.5
33	38								67.4	72.6	82.9	103.7	124.4	145.2	165.9	207.4	240.6					464	240.6
36	40									76.0	86.9	108.6	130.3	152.0	173.7	217.2	260.6	283.2				522	283.2
Depth	n (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

8.8 Grade Steel Studding

																							F _{d,s}
Stud	Hole																					h _{ef}	design
Diameter	Diameter									Emb	edm	ent D	epth	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	11.3	13.2	15.1	17.0	18.9	19.5									· · · · ·						104	19.5
10	12	14.1	16.5	18.9	21.2	23.6	25.9	28.3	30.6	30.9												131	30.9
12	14		19.8	22.6	25.5	28.3	31.1	33.9	36.8	39.6	45.0											159	45.0
16	18			29.0	32.7	36.3	39.9	43.6	47.2	50.8	58.1	72.6	83.7									231	83.7
20	22			30.4	34.2	38.0	41.8	45.6	49.4	53.2	60.8	76.0	91.2	106.5	121.7	130.7						344	130.7
24	28					39.5	43.5	47.4	51.4	55.3	63.2	79.0	94.8	110.6	126.4	158.1	188.3			-		476	188.3
27	30						48.9	53.3	57.8	62.2	71.1	88.9	106.7	124.5	142.2	177.8	213.4	240.0	244.8			551	244.8
30	35							59.3	64.2	69.1	79.0	98.8	118.5	138.3	158.1	197.6	237.1	266.7	296.4	299.2		606	299.2
33	38								67.4	72.6	82.9	103.7	124.4	145.2	165.9	207.4	248.8	280.0	311.1	342.2	370.1	714	370.1
36	40									76.0	86.9	108.6	130.3	152.0	173.7	217.2	260.6	293.2	325.8	358.3	390.9	803	435.7
Depth	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

Design Resistance used with various stud strengths, material and rebar.

10.9 Grade Steel Studding

																							F _{d,s}
Stud	Hole																					h _{ef}	design
Diameter	Diameter									Emb	edm	ent D	epth	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	11.3	13.2	15.1	17.0	18.9	20.7	22.6	24.5	26.4	27.2											144	27.2
10	12	14.1	16.5	18.9	21.2	23.6	25.9	28.3	30.6	33.0	37.7	43.1										183	43.1
12	14		19.8	22.6	25.5	28.3	31.1	33.9	36.8	39.6	45.2	56.6	62.6									221	62.6
16	18			29.0	32.7	36.3	39.9	43.6	47.2	50.8	58.1	72.6	87.1	101.6	116.6							321	116.6
20	22			30.4	34.2	38.0	41.8	45.6	49.4	53.2	60.8	76.0	91.2	106.5	121.7	152.1						479	182.0
24	28					39.5	43.5	47.4	51.4	55.3	63.2	79.0	94.8	110.6	126.4	158.1	189.7					664	262.2
27	30						48.9	53.3	57.8	62.2	71.1	88.9	106.7	124.5	142.2	177.8	213.4	240.0				767	341.0
30	35							59.3	64.2	69.1	79.0	98.8	118.5	138.3	158.1	197.6	237.1	266.7	296.4			844	416.7
33	38								67.4	72.6	82.9	103.7	124.4	145.2	165.9	207.4	248.8	280.0	311.1	342.2		994	515.5
36	40									76.0	86.9	108.6	130.3	152.0	173.7	217.2	260.6	293.2	325.8	358.3	390.9	1118	606.9
Depth	n (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

A4-70 Stainless Steel Studding

																							⊢ _{d,s}
Stud	Hole															steel	failure	Э				h _{ef}	design
Diameter	Diameter									Emb	edm	ent D	epth	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	11.3	13.2	13.7																		73	13.7
10	12	14.1	16.5	18.9	21.2	21.7																92	21.7
12	14		19.8	22.6	25.5	28.3	31.1	31.6														112	31.6
16	18			29.0	32.7	36.3	39.9	43.6	47.2	50.8	58.1	58.8										162	58.8
20	22			30.4	34.2	38.0	41.8	45.6	49.4	53.2	60.8	76.0	91.2	91.7								241	91.7
24	28					39.5	43.5	47.4	51.4	55.3	63.2	79.0	94.8	110.6	126.4	132.1						334	132.1
27	30						48.9	53.3	57.8	62.2	71.1	80.2		8							1	181	80.2
30	35							59.3	64.2	69.1	79.0	98.1									1	199	98.1
33	38						C		67.4	72.6	82.9	103.7	121								1	234	121.3
36	40									76.0	86.9	108.6	130.3	143							1	263	142.8
Depth	n (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

*1 = Tensile strength 500N/mm2

E

Design Resistance used with various stud strengths, material and rebar. A4-80 Stainless Steel Studding

																							F _{d,s}
Stud	Hole																					h _{ef}	design
Diameter	Diameter									Emb	edm	ent D	epth	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	11.3	13.2	15.1	15.7																	83	15.7
10	12		16.5	18.9	21.2	23.6	24.8															105	24.8
12	14		19.8	22.6	25.5	28.3	31.1	33.9	36.1													128	36.1
16	18			29.0	32.7	36.3	39.9	43.6	47.2	50.8	58.1	67.2										185	67.2
20	22			30.4	34.2	38.0	41.8	45.6	49.4	53.2	60.8	76.0	91.2	104.8								276	104.8
24	28					39.5	43.5	47.4	51.4	55.3	63.2	79.0	94.8	110.6	126.4	132.1					2	334	132.1
27	30						48.9	53.3	57.8	62.2	71.1	80.2									1	181	80.2
30	35							59.3	64.2	69.1	79.0	98.1									1	199	98.1
33	38								67.4	72.6	82.9	103.7	121.3								1	234	121.3
36	40									76.0	86.9	108.6	130.3	142.8							1	263	142.8
Depth	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		20

																							$F_{d,s}$
Rebar	Hole																					h _{ef}	yield
Diameter	Diameter									Emb	edm	ent D	epth	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	500	560	640	720	800	(mm)	(kN)
8	10	8.4	9.8	11.2	12.6	14.0	15.4	16.8	18.2	19.6	21.9											157	21.9
10	12	10.5	12.2	14.0	15.7	17.5	19.2	20.9	22.7	24.4	27.9	34.1										196	34.1
12	14		13.2	15.1	17.0	18.9	20.7	22.6	24.5	26.4	30.2	37.7	45.2	49.2								261	49.2
16	20			19.0	21.4	23.7	26.1	28.5	30.9	33.2	38.0	47.5	57.0	66.5	76.0							368	87.4
20	25			20.4	22.9	25.5	28.0	30.6	33.1	35.7	40.8	51.0	61.2	71.4	81.6	102.0						536	136.6
25	30					29.9	32.9	35.9	38.9	41.9	47.9	59.8	71.8	83.8	95.8	119.7	149.6					657	196.5
28	35						34.6	37.7	40.8	44.0	50.3	62.8	75.4	88.0	100.5	125.7	157.1	176.0				852	267.8
32	40								46.7	50.3	57.5	71.8	86.2	100.5	114.9	143.6	179.5	201.1	229.8			974	349.7
36	44									56.6	64.6	80.8	97.0	113.1	129.3	161.6	202.0	226.2	258.5	290.9		1098	443.5
40	50										67.0	83.8	100.5	117.3	134.1	167.6	209.5	234.6	268.1	301.6	335.1	1304	546.3
Depth	n (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	500	560	640	720	800		

*1 = Tensile strength 500N/mm2

*2 = Tensile strength 700N/mm2

Design Resistance used with various stud strengths, material and rebar.

High bond reinforcing bars Fyk=420N/mm2

																							$F_{d,s}$
Rebar	Hole																					h _{ef}	yield
Diameter	Diameter									Emb	edm	ent D	epth	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	500	560	640	720	800	(mm)	(kN)
8	10	8.4	9.8	11.2	12.6	14.0	15.4	18.4														120	18.4
10	12	10.5	12.2	14.0	15.7	17.5	19.2	20.9	22.7	24.4	28.7											149	28.7
12	15		13.2	15.1	17.0	18.9	20.7	22.6	24.5	26.4	30.2	41.3										197	41.3
16	18			19.0	21.4	23.7	26.1	28.5	30.9	33.2	38.0	47.5	57.0	73.4								277	73.4
20	25			20.4	22.9	25.5	28.0	30.6	33.1	35.7	40.8	51.0	61.2	71.4	81.6	102.0						426	114.8
25	30					29.9	32.9	35.9	38.9	41.9	47.9	59.8	71.8	83.8	95.8	119.7	165.1					490	165.1
28	35						34.6	37.7	40.8	44.0	50.3	62.8	75.4	88.0	100.5	125.7	157.1	176.0				632	225.0
32	40								46.7	50.3	57.5	71.8	86.2	100.5	114.9	143.6	179.5	201.1	229.8			722	293.7
36	44									56.6	64.6	80.8	97.0	113.1	129.3	161.6	202.0	226.2	258.5	290.9		865	372.5
40	50										67.0	83.8	100.5	117.3	134.1	167.6	209.5	234.6	268.1	301.6	335.1	959	458.9
Depth	n (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	500	560	640	720	800		

Página 7|20

Characteristic and Design Load resistances based on characteristic bond strengths for hef 4d (minimum embedment) to 20d

			Non Crac					<u> </u>	Cracked				
		cteris c nce (kN)	-	Resistance (N)		nded Load N)		cteris c nce (kN)	-	esistance (N)		nded Load N)	Nominal Embedment
Size	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	
(mm)	N _{rk}	V _{rk}	N _{rd}	V _{rd}	N _{rec}	Vrec	N _{rk}	V _{rk}	N _{rd}	V_{rd}	N _{rec}	Vrec	(mm)
	20.36		11.31		8.08								60
8	27.14	9.00	15.08	7.20	10.77	5.14							80
	54.29		30.16		21.54		Not Ap	plicable	Not An	plicable	Not An	plicable	160
	25.45		14.14		10.10		ΝΟΙ ΑΡΙ	plicable	ΝΟΙ ΑΡ	plicable	ΝΟΙ Αμ	plicable	60
10	38.17	15.00	21.21	12.00	15.15	8.57							90
	84.82		47.12		33.66								200
	35.63		19.79		14.14		18.47		10.26		7.33		70
12	55.98	21.00	31.10	16.80	22.22	12.00	28.00	21.00	15.56	16.80	11.11	12.00	110
	122.15		67.86		48.47		63.33		35.19		25.13		240
	52.28		29.04		20.74		24.13		13.40		9.57		80
16	81.68	39.00	45.38	31.20	32.41	22.29	39.20	39.00	21.78	31.20	15.56	22.29	125
	209.10		116.17		82.98		96.51		53.62		38.30		320
	67.86		32.31		23.08		31.10		14.81		10.58		90
20	128.18	61.00	61.04	48.80	43.60	34.86	58.96	61.00	28.08	48.80	20.06	34.86	170
	301.59 82.94		143.62 39.49		102.58 28.21		138.23 37.70		65.82 17.95		47.02 12.82		400 100
24	174.17	88.00	82.94	70.40	59.24	50.29	78.37	88.00	37.32	70.40	26.66	50.29	210
	398.10 102.64		189.57 48.87		135.41 34.91		180.96 46.65		86.17 22.22		61.55 15.87		480 110
	223.93		106.63		76.17		96.29		45.85		32.75		240
27	503.85	115.00	239.93	92.00	171.38	65.71	229.02	115.00	109.06	92.00	77.90	65.71	540
	124.41		59.24		42.32		56.55		26.93		19.23		120
30	290.28	142.50	138.23	114.00	98.74	81.43	119.00	142.50	56.67	114.00	40.48	81.43	280
50	622.04	142.30	296.21	114.00	211.58	01.43	282.74	142.30	134.64	114.00	96.17	01.45	600
	141.51		67.39		48.13		64.02		30.48		21.77		130
33	326.57	173.50	155.51	138.80	111.08	99.14	130.63	173.50	62.20	138.80	44.43	99.14	300
	718.45	1, 5.50	342.12	100.00	244.37	55.14	325.01	1, 5.50	154.77	100.00	110.55	55.14	660
	169.65		80.78		57.70		76.34		36.35	ļ	25.97		150
36	384.53	212.50	183.11	170.00	130.79	121.43	146.12	212.50	69,6	170.00	49.70	121.43	340
	814.30	212.50	387.76	1,0.00	276.97	121.75	366.44	212.50	174.49	1,0.00	124.64	121.45	720
		os : coo ba					-		-				

Table notes : see back page

Página 9|20

Bond Strength Factor

Influence of concrete strength on combined pull out and concrete cone resistance

Concrete Strength N/mm2 (MPa)	C15/20	C20/25	C25/30	C30 / 37	C35/45	C40/50	C45 / 55	C50/60
fc =	0.98	1.00	1.02	1.04	1.06	1.08	1.09	1.10

Influence of environmental conditions in non cracked concrete

		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36
Temp I	Dry and Wet	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
40°C / 24°C	Flooded	1.00	0.94	0.87	0.79	0.71	0.65	0.65	0.60	0.57	0.55
Temp II	Dry and Wet	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
60°C / 43°C	Flooded	0.65	0.63	0.61	0.59	0.57	0.54	0.52	0.50	0.48	0.46
Temp III	Dry and Wet	0.57	0.56	0.54	0.53	0.52	0.51	0.50	0.48	0.47	0.46
72°C / 43°C	Flooded	0.57	0.54	0.52	0.51	0.50	0.49	0.47	0.45	0.44	0.42

Influence of environmental conditions in cracked concrete

	-										
		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36
Temp I	Dry and Wet	n/a	n/a	0.50	0.48	0.46	0.45	0.43	0.41	0.40	0.38
40°C / 24°C	Flooded	n/a	n/a	0.50	0.42	0.38	0.38	0.32	0.28	0.24	0.20
Temp II	Dry and Wet	n/a	n/a	0.32	0.31	0.30	0.29	0.28	0.27	0.26	0.25
60°C / 43°C	Flooded	n/a	n/a	0.32	0.29	0.28	0.27	0.25	0.23	0.22	0.20
Temp III	Dry and Wet	n/a	n/a	0.27	0.27	0.26	0.25	0.25	0.24	0.23	0.20
72°C / 43°C	Flooded	n/a	n/a	0.27	0.27	0.26	0.25	0.25	0.24	0.23	0.22

Table notes : see back page

Characteristic and Design Load resistances for <u>REBAR</u> based on characteristic bond strengths for hef 4d (min embedment) to 20d

			Non Crack				naracterist			Concrete			
	Charac Resistar		-	esistance N)	Recommer (k	nded Load N)		cteris c nce (kN)	-	esistance (N)	Recomme (k	nded Load N)	Nominal
Rebar	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Embedment
ø	N _{rk}	V _{rk}	N _{rd}	V _{rd}	N _{rec}	Vrec	N _{rk}	V _{rk}	N _{rd}	V _{rd}	N _{rec}	Vrec	(mm)
	15.08		8.38		5.98								60
8	20.11	13.95	11.17	9.30	7.98	6.64							80
	40.21		22.34		15.96								160
	18.85		10.47		7.48		ΝΟΤ ΑΡ	plicable	ΝΟΤ ΑΡ	plicable	ΝΟΤ ΑΡ	plicable	60
10	28.27	21.45	15.71	14.30	11.22	10.21							90
	62.83		34.91		24.93	1							200
	23.75		13.19		9.42		13.19		7.33		5.24		70
12	37.32	31.05	20.73	20.70	14.81	14.79	20.73	31.05	11.52	20.70	8.23	14.79	110
	81.43		45.24		32.31		45.24		25.13		17.95		240
	30.78		17.10		12.21		16.71		9.29		6.63		80
14	44.25	42.45	24.58	28.30	17.56	20.21	22.56	42.45	12.54	28.10	8.96	20.07	115
	107.73		59.85		42.75		58.50		32.50		23.21		280
	34.18		18.99		13.56		18.10		10.05		7.18		80
16	53.41	55.50	29.67	37.00	21.19	26.43	25.10	55.50	13.94	37.00	9.96	26.43	125
	136.72		75.96		54.25		72.38		40.21		28.72		320
	37.32		20.73		14.81		19.23		10.68		7.63		80
18	69.98	69.66	38.88	46.44	27.77	33.17	31.50	69.66	17.50	46.44	12.50	33.17	150
	167.95		93.31		66.65		86.52		48.07		34.33		360
	45.24		21.54		15.39		22.62		10.77		7.69		90
20	85.45	86.55	40.69	57.70	29.07	41.21	37.60	86.55	17.90	57.70	12.79	41.21	170
	201.06		95.74		68.39		100.53		47.87		34.19		400
	55.29		26.33		18.81		25.92		12.34		8.82		100
22	105.06	104.01	50.03	69.34	35.73	49.53	45.18	104.00	21.51	69.34	15.37	49.53	190
	243.29		115.85		82.75		114.04		54.30		38.79		440
	62.83		29.92		21.37		27.49		13.09		9.35		100
25	131.95	135.00	62.83	90.00	44.88	64.29	56.73	135.00	27.02	90.00	19.30	64.29	210
	314.16		149.60		106.86		137.45		65.45		46.75		500
	73.89		35.19		25.13		34.48		16.42		11.73		112
28	184.73	168.75	87.96	112.50	62.83	80.36	77.60	168.75	36.95	112.50	26.39	80.36	280
	369.45		175.93		125.66		172.41		82.10		58.64		560
	96.51		45.96		32.83		45.04		21.45		15.32		128
32	241.27	220.95	114.89	147.30	82.07	105.21	98.92	220.95	47.10	147.30	33.65	105.21	320
	482.55		229.79		164.13	1	225.19		107.23		76.60		640
L													

Bond Strength Factors - REBAR Influence of concrete strength on combined pull out and concrete cone resistance

Concrete Strength N/mm2 (MPa)	C15/20	C20/25	C25/30	C30 / 37	C35/45	C40 / 50	C45/55	C50/60
fc =	0.98	1.00	1.02	1.04	1.06	1.08	1.09	1.10
Concrete Strength N/mm2 (MPa)	C55 / 67	C60 / 75	C70 / 85	C80 / 96	C90/105	-	-	-
fc =	1.10	1.12	1.13	1.14	1.15	-	-	-

Influence of environmental conditions in non cracked concrete

		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 18	Ø 20	Ø 22	Ø 25	Ø 28	Ø 32
Temp I	Dry and Wet	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
40°C / 24°C	Flooded	1.00	0.94	0.90	0.87	0.85	0.82	0.80	0.76	0.71	0.65	0.63
Temp II	Dry and Wet	0.67	0.65	0.63	0.63	0.62	0.62	0.61	0.61	0.60	0.60	0.59
60°C / 43°C	Flooded	0.65	0.64	0.61	0.60	0.59	0.59	0.58	0.57	0.56	0.55	0.47
Temp III	Dry and Wet	0.60	0.58	0.57	0.57	0.56	0.56	0.56	0.55	0.55	0.54	0.53
72°C / 43°C	Flooded	0.58	0.56	0.53	0.52	0.50	0.47	0.47	0.46	0.45	0.43	0.41

Influence of environmental conditions in cracked concrete

		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 18	Ø 20	Ø 22	Ø 25	Ø 28	Ø 32
Temp I	Dry and Wet	n/a	n/a	0.55	0.51	0.47	0.45	0.44	0.43	0.43	0.42	0.41
40°C / 24°C	Flooded	n/a	n/a	0.55	0.48	0.42	0.41	0.40	0.39	0.38	0.36	0.35
Temp II	Dry and Wet	n/a	n/a	0.30	0.29	0.28	0.27	0.26	0.25	0.24	0.23	0.23
60°C / 43°C	Flooded	n/a	n/a	0.30	0.28	0.27	0.26	0.25	0.24	0.23	0.22	0.22
Temp I 72°C / 43°C	Dry and Wet	n/a	n/a	0.30	0.28	0.26	0.25	0.25	0.24	0.24	0.23	0.22

Flooded	n/a	n/a	0.30	0.28	0.26	0.25	0.24	0.24	0.23	0.23	0.22
---------	-----	-----	------	------	------	------	------	------	------	------	------

Table notes : see back page

Material Properties for grades of other threaded rod and rebar

	Stud Grade 8.8		Stud G	rade 10.9	Stud G	ade A4-70	Stud G	ade A4-80
Stud Diameter	N rk, s	Nrd, s						
(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
M8	29.2	19.5	38.1	27.2	25.6	13.7	29.2	15.6
M10	46.4	30.9	60.3	43.1	40.6	21.7	46.4	24.8
M12	67.4	44.9	87.7	62.6	59.0	31.6	67.4	36.0
M16	125.6	83.7	163.0	116.4	109.9	58.8	125.7	67.2
M20	196.1	130.7	255.0	182.1	171.5	91.7	196.0	104.8
M24	282.5	188.3	367.0	262.1	247.1	132.1	293.0	132.1
M27	367.0	244.7	477.4	341.0	229.4	80.2	229.4	80.2
M30	448.8	299.2	583.0	416.4	280.6	98.1	280.6	98.1
M33	555.2	370.1	721.8	515.5	347.0	121.3	347.0	121.3
M36	653.6	435.7	849.7	606.9	408.4	142.8	408.4	142.8
	Stud 0	Grade 8.8	Stud G	rade 10.9	Stud G	ade A4-70	Stud G	ade A4-80
Stud Diameter	Vrk, s	Vrd, s						
(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
M8	14.6	11.7	19.0	15.2	12.8	8.2	14.6	9.4
M10	23.2	18.6	30.2	24.1	20.3	13.0	23.2	14.9
M12	33.7	27.0	43.8	35.1	29.5	18.9	33.7	21.6
M16	62.8	50.2	81.6	65.3	55.0	35.2	62.8	40.3
M20	98.0	78.4	127.4	101.9	85.8	55.0	98.0	62.8
M24	141.2	113.0	183.6	146.8	123.6	79.2	141.2	90.5
M27	183.5	146.8	238.7	191.0	114.7	48.4	114.7	48.4
M30	224.4	179.5	291.5	215.9	140.3	89.9	140.3	89.9
M33	277.6	222.1	360.9	288.7	173.5	111.2	173.5	111.2
M36	326.8	261.4	424.8	283.2	204.2	130.9	204.2	130.9

Effect of Anchor Spacing – Tension Effect of Edge Distance - Tension

	Rebar BSt 5	i00 to DIN 488	Rebar BSt 500 to DIN 48			
Rebar Diameter (mm)	Nrk, s	Nrd, s	Vrk, s	Vrd, s		
	(kN)	(kN)	(kN)	(kN)		
8	28.0	20.0	14.0	9.3		
10	43.0	30.7	21.5	14.3		
12	62.0	44.3	31.0	20.7		
14	84.4	67.0	42.5	28.3		
16	111.0	79.3	55.5	37.0		
18	139.5	100.0	70.0	46.7		
20	173.0	123.6	86.5	57.7		
22	208.3	149.3	104.5	69.7		
25	270.0	192.9	135.0	90.0		
28	339.0	242.1	169.0	112.7		
32	442	315.7	221	147.3		
36	563.2	443.5	281.6	187.7		
40	693.8	546.3	346.9	231.3		

Table

notes : see back page

Anchor Spacing				St	ud /	Reba	r Dia	mete	r		
(mm)	8	10	12	16	20	24	27	30	33	36	40
40	0.64										
50	0.67	0.63									
60	0.70	0.65	0.63								
70	0.73	0.67	0.64								
80	0.76	0.69	0.66	0.63							
90	0.79	0.72	0.68	0.64							
100	0.82	0.74	0.70	0.65	0.63						
120	0.87	0.79	0.74	0.68	0.65	0.63	0.63				
150	0.96	0.86	0.80	0.73	0.68	0.65	0.64	0.63			
160	1.00	0.88	0.82	0.74	0.70	0.66	0.65	0.63	0.63	0.63	0.63
175		0.92	0.85	0.76	0.71	0.67	0.66	0.64	0.63	0.63	0.63
200		1.00	0.90	0.80	0.74	0.69	0.69	0.66	0.65	0.65	0.65
225			0.95	0.84	0.77	0.72	0.71	0.68	0.67	0.67	0.66
240			1.00	0.86	0.79	0.73	0.72	0.69	0.68	0.68	0.67
250				0.87	0.80	0.74	0.73	0.70	0.69	0.68	0.68
275				0.91	0.83	0.76	0.75	0.72	0.71	0.70	0.69
280				0.92	0.84	0.77	0.76	0.73	0.71	0.70	0.69
300				0.95	0.86	0.79	0.78	0.74	0.73	0.72	0.71
320				1.00	0.88	0.81	0.80	0.76	0.74	0.73	0.72
350					0.92	0.83	0.82	0.78	0.77	0.75	0.73
400					1.00	0.88	0.87	0.82	0.80	0.78	0.76
440						0.92	0.91	0.85	0.83	0.81	0.79
480						1.00	0.94	0.88	0.86	0.84	0.81
540							1.00	0.93	0.91	0.88	0.84
600								1.00	0.96	0.92	0.88
660									1.00	0.96	0.91
720										1.00	0.95
800											1.00

Edge Dista nce	Stud / Rebar Diameter											
(mm)	8	10	12	16	20	24	27	30	33	36	40	
40	0.64	-		-	-						-	
50	0.73	0.63										
60	0.82	0.70	0.63									
Eøge	0.90	0.77	0.68	St	ud/R	ebarl	iame	ter				
(ന്റന്ന)	1.00	01.84	0.174	0163	20	24	27	30	33	36	40	
40	0.25	0.04	0.74	0.05	20		/					
	0.20	0.01	0.80	0.67								
90 50	0.44	0.91	0.80	0.67								
100	0.77	1.00	0.86	0.71	0.63							
60	0.63	0.48	0.86	0.71	0.05							
110	5.05	5.40	0.30	0.76	0.66							
70	0.81	0.65	0.92	0.70	0.00							
120	5.51	5.55		0 00	0.70	0.64						
80	1.00	0.83	1.00 0.58	0.80	0.70	0.64						
80 140	1.00	0.00	0.50		0.77	0 67	0.62	0 62				
140 90		1.00	0.72	0.89	0.77	0.67	0.63	0.63				
90 160		1.00	0.72		0.84	0 7 2	0.70	0 65	0.52	0.67		
100		$\left - \right $	0.86	1.00 0.67	0.84	0.72	0.70	0.65	0.63	0.67		
			0.00	0.07		0.70	0.75	0.70	0.00	0.74	0.00	
180			1.00	0.80	0.91 0.44	0.78	0.75	0.70	0.66	0.71	0.68	
110			1.00	0.60		0.94	0.01	0.70	0.71	0.74	0.74	
200				1.00	1.00 0.58	0.84	0.81	0.76	0.71	0.74	0.71	
125				1.00	0.38		0.96	0.81	0.75	0.70	0.75	
220					0.72	0.89 0.46	0.86 0.35	0.81	0.75	0.78	0.75	
140					0.72		_		0.00	0.02	0.70	
240		$\left - \right $			0.01	1.00	0.92	0.86	0.80	0.82	0.78	
160					0.91	0.62	0.51	0.35	0.32	0.33	0.00	
270					1.00	0.77	1.00	0.94	0.87	0.87	0.83	
180					1.00	0.77	0.63	0.46	_	0.43	0.00	
300						0.02	0.75	1.00	0.94	0.93	0.88	
200						0.92	0.75	0.57	0.46	0.50	0.32	
330						1.00	0.00	0.00	1.00	0.98	0.93	
220						1.00	0.88	0.68	0.56	0.56	0.53	
360							4.55	0.70	0.57	1.00	0.98	
240							1.00	0.78	0.65	0.63	0.59	
400											1.00	
280								1.00	0.84	0.77	0.72	
310									1.00	0.90	0.82	
330										1.00	0.89	
400						<u> </u>	<u> </u>				1.00	

Concrete Temperature	Gel - Working Time	Minimum curing me in dry concrete	Minimum curing me in wet concrete
5°C	120 min	24 h	x2
15°C	60 min	18 h	x2
25°C	20 min	7 h	x2
35°C	12 min	5 h	x2
45°C	6 min	4 h	x2

- All specifications based on supplied mixer

Temperature Ranges

Temperature Range	Concrete Service Temperature	Maximum Long Term Concrete Temp	Maximum Short Term Concrete Temp
Range I	-40°C to +40°C	+24°C	+40°C
Range II	-40°C to +60°C	+43°C	+60°C
Range III	-40°C to +72°C	+43°C	+72°C

Service temperature range: Range of ambient temperatures after installation and during the lifetime of the

 $anchor.\ \textbf{Short\ term\ temperature}: Temperatures\ within\ the\ service\ temperature\ range\ which\ vary\ over\ short$

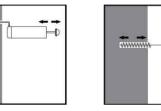
intervals, e.g. day/night cycles and freeze/thaw cycles.

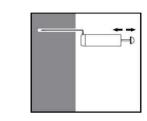
Long term temperature: Temperature, within the service temperature range, which will be approximately

constant over significant periods of me.

Long term temperatures will include constant or near constant temperatures, such as those experienced in cold stores or next to heating installations.

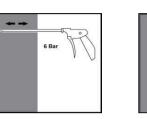
Physical Properties

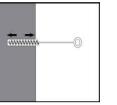

	N/mm2 (MPa)	Test Method
Compressive Strength	95	EN ISO 604 / ASTM 695
Flexural Strength 52.79 EN ISO 1		EN ISO 178 / ASTM 790



Flexural Modulus	4331	EN ISO 178 / ASTM 790	
Tensile Strength	26.94	EN ISO 527 / ASTM 638	
E Modulus	7267	EN ISO 527 / ASTM 638	
VOC Content	A+ Rating	-	

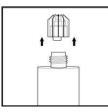
Installation parameters: drilling hole cleaning and installation

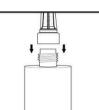


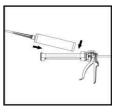


Drill hole in the substrate to the required embedment depth using the appropriately sized carbide drill bit. Bore hole cleaning Just before setting an anchor, the bore hole must be free of dust and debris. The manual pump shall be used for blowing out bore holes up to diameters do \leq 24mm and embedment depths up to hef \leq 10d. Blow out at least 4 times from the back of the bore hole, using an extension if needed. Brush 4 times with the specified brush size (see Table 6) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. Blow out again with manual pump at least 4 times.

Compressed air cleaning (CAC) for all bore hole diameters do and all bore hole depths

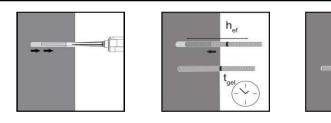






Blow 2 times from the back of the hole (if needed with a nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h). Brush 2 times with the specified brush size by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.

X 2 Blow out again with compressed air at least 2 times.



Remove the threaded cap from the cartridge. Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer. Insert the cartridge into the dispenser gun. Discard the initial trigger pulls of adhesive. Discard the first 10ml of resin.

Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full, to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment depth. Before use, verify that the threaded rod is dry and free of contaminants. Install the threaded rod to the required embedment depth during the open gel time tgel has elapsed. The

working time tgel is given in Table 7. The anchor can be loaded after the required curing time tcure. The applied torque shall not exceed the values Tmax given.

Chemical Resistance Chart

Chemical	Chemicals Tested	Resistant	Not Resistant
Alkaline	Concrete Drilling Mud (10%) pH=12.6	+	
	Concrete Drilling Mud (10%) pH=13.2	+	
	Concrete Potash solution (10%) pH=14.0	+	
cids	Acetic Acid (10%) ¹		
	Nitric Acid (10%) ¹		
	Hydrochloric Acid (10%) 3 Month		
	Sulfuric Acid (10%)		
olvents	Benzyl Alcohol		
	Ethanol		
	Ethyl acetate		-
	Methyl ethyl ketone (MEK)		-
	Triclorethylene		-
	Xylene (mixture)	+	
hemicals used on	Concrete plasticizer	+	
ob sites	Diesel oil	+	
	Oil	+	
	Petrol	+	
	Oil for form work (forming oil)	+	

Environmental	Salt Water	+
Chemicals	de-mineralized water	+
	salt spraying test	+
	SO ₂	+
	Environment / Weather	+

1 - concrete was disolved by acid

Notes

PAGE 2 :

Typical characteristic and design resistance performance with 5.8 grade studding and associated installation data

All data is based on correct installation - see instructions

No influence of edge and spacing or concrete cone failure

Minimum base material thickness hef +30mm >100mm for M8 to M12 and for M16 to M30 hef +2 d

hef range minimum or 4d whichever is greatest to 20d

Concrete strength C20/25 - f_c cube = 25N/mm² (25 Mpa)

5.8 grade stud

Temperature range I maximum long term / short term temperature +24/40°C

PAGE 3 to 6 :

Design Resistance with various stud strengths, material and rebar. Note 1 for stainless steel tensile strength is 500N/mm² (500MPa)

Note 2 for stainless steel tensile strength is 700N/mm² (700MPa)

Data shown below the minimum embedment depth is for reference only. Please refer to manufacturer for advice.

PAGE 7 and 9:

Characteristic and Design Load resistances based on characteristic bond strengths for hef 4d (minimum embedment) to 20d

All data is based on correct installation - see instructions

No influence of edge and spacing or concrete cone failure

Minimum base material thickness hef +30mm >100mm for M8 to M12 and for M16 to M30 hef +2 d

h_{ef} range minimum or 4d whichever is greatest to 20d

Concrete strength C20/25 - f_c cube = 25N/mm² (25MPa) Temperature range i maximum long term / short term temperature +24/40°C

PAGE 8 & 10 :

Bond Strength Factors

Select concrete strength and environmental condition and apply to bond strength table on page 4

PAGE 11 :

Material Properties for grades of other threaded rod and rebar

All grades shown for information M30 studding is 8.8 grade instead of 5.8 grade M30 for A4-70 tensile strength of 500N/mm2 (500MPa), instead of 700N/mm2 (700MPa) Safety factor is 1.5 tension and 1.25 shear for all carbon steel Safety factor is 1.56 for stainless steel, up to M24, M30 and M36 is 2.0 Safety factor is 1.4 tension and 1.5 shear for BSt 500 rebar

Par al Safety Factors :

1.8 for 8mm-16mm rebar and studs

2.1 for 16mm and above rebar and studs

WARRANTY

SAXON PAINTS warrant its title to the product, that the quality of the product conforms to SAXON PAINTS' specifications for such product in effect at the time of manufacture and that the product shall be delivered free of the rightful claim of any third person for infringement of any patent covering the product. This product is for professional use only. The applicators and operators shall be trained, experienced and have the capability and equipment to mix/stir and apply the coatings correctly and according to SAXON PAINTS' technical documentation. Applicators and operators shall use appropriate personal protection equipment when using this product. This guideline is given based on the current knowledge of the product. These are the only warranties that SAXON PAINTS makes and all other express or implied warranties, under statute or arising otherwise in law, from a course of dealing or usage of trade, including without limitation, any other warranty of fitness for a particular purpose or use, are disclaimed by SAXON PAINTS. Any claim under this warranty must be made by Buyer to SAXON PAINTS in writing within five (5) days of Buyer's discovery of the claimed defect, but in no event later than the expiration of the applicable shelf life of the product, or one year from the date of the delivery of the product to the Buyer, whichever is earlier. Buyer's failure to notify SAXON PAINTS of such non-conformance as required herein shall bar Buyer from recovery under this warranty Any suggested deviation to suit the site conditions shall be forwarded to the responsible SAXON PAINTS' representative for approval before commencing the work.

LIMITATIONS OF LIABILITY

The information in this document is given to the best of SAXON PAINTS' knowledge. The information in this sheet is intended for guidance only and is based upon laboratory tests that SAXON PAINTS' believes to be reliable. SAXON PAINTS' products are considered as semifinished goods and as such, products are often used under conditions beyond SAXON PAINTS' control like the quality or condition of the substrate, or the many factors affecting the use and application of the product. The product and related information are designed for users having the requisite knowledge and industrial skills in the industry and it is the end-user's responsibility to determine the suitability of the product for its own particular use and it shall be deemed that Buyer has done so, as its sole discretion and risk. SAXON PAINTS' does not accept any liability arising from any loss, injury or damage resulting from such use or the contents of this information. Variations in the application environment, changes in procedures of use, or extrapolation of data may cause unsatisfactory results. Minor product variations may be implemented in order to comply with local requirements. Users should always consult SAXON PAINTS' for specific guidance on the general suitability of this product for their needs and specific application practices. If there is any inconsistency between different language issues of this document, the English (United Kingdom) version will prevail